

## **DESCRIPTION**

EEI Expanded Polystyrene is rigid and light - weighted. By controlling the density of expanding beads during the manufacturing process, EEI can custom produce insulation materials according to the specific requirements of customers applications. EEI production of Expanded Polystyrene boards and injection molded boards are in conformity with the British Standard specification BS EN 13163:2012 for expanded Polystyrene boards, DIN and ASTM (American Society for Testing and Materials).

Type N (Normal): It consists of 100% of closed cell polystyrene expandable beads.

Type A (Fire Retardant): It is similar to Type N, but meets additional requirements for the extent of burn when tested with the method given by virtue of BS 4735. This requirement is met by the incorporation of flame retardant additives and other appropriate modifications.



## **EPS CHARACTERISTICS**

- Heat resistant
- Low thermal conductivity
- High permanent R value
- High compressive strength
- Excellent stock absorption
- Excellent dimensional stability
- Low water absorption
- Reflective white color
- Non dusting
- Will not rot, mildew or support bacterial growth
- Resistant to most acids and alkalis

# **EPS ADVANTAGES**

- Energy saving
- Low material / installation costs
- Broad range of densities and sizes
- Easy to handle and apply
- Simple to cut and shape
- Tolerates broad range of temperatures
- Doesn't irritate skin
- Restricts moisture penetration
- Does not deplete the Earth ozone layer

## THICKNESS AND TOLERANCES

Thickness can be cut as required, from 8 mm up to 1120 mm. On specified thickness, length, and width, tolerance will be + - 2 mm.

## **MOLDED BOARDS**

Molded boards are boards of injection molded from expanded beads, that has surface skin on all sides and molded edges.

## **CUT BOARDS**

The large molded blocks are hot wire cut on flat lines at any desired thickness, width, and length. In addition, EEI CAD / CAM capabilities provide its customers with an infinite variety of standard, customs, and redius products. Cut boards are boards cut from a block molded from expanded beads, which could be fine, very fine, or coarse grain. Used raw materials could be of general purpose (type N material) or fire retardant category (type A material).









# APPLICATIONS OF EXPANDED POLYSTYRENE INSULATION:

#### **PRODUCT PARAMETERS**

- Insulation of roofs, walls, and floors Prefab houses and partitions
- Sound insulation
- Molded pipe insulation for air conditioning
- Insulation of hot and cold water lines
- Expansion joints
- Hourdis and void formers
- Insulation of deep freeze rooms, cold stores, cold display cabinets and refrigerated vehicles
- Pipe insulation
- Wall insulation inserts



# **INSULATION PROPERTIES**

#### Description

Injection Moulded Expanded Polystyrene

closed cell expanded blue polystyrene panels. It features excellent thermal insulation properties, high compressive strength and very low absorption. EPS panels are moulded and have no cut sides.

#### Application of EPS for inverted membrane roofs:

EPS panels are recommended for any application requiring efficient thermal insulation, good resistance to moisture, and high mechanical strength. By virtue of its high compressive strength and low water absorption, EPS is ideal for the thermal insulation of inverted membrane roofs. EPS panels can be covered with concrete (or other material with sufficient loads capacity) to enable adequate ballasting and protection from U.V radiation, rain and storms. Water absorption by EPS panels is very low and has practically no adverse effect on thermal insulation.

## Resistance to chemicals and outdoor exposure:

The resistance of EPS to chemicals, solvents, and aging is very much the same as that of the polystyrene (Extruded or cut-cell surface boards), from which it has been derived. EPS is immune to water and aqueous solution of salts, most acids and alkalis. Bonding EPS with emulsion or contact adhesive and bitumen will not affect its physical properties.

#### Installation

EPS panels can be worked with conventional wood working tools. The panels could be bound together with hot bitumen, dispersion - type structural or special adhesives. Instructions for use and safety precautions relating to the adhesive must be observed.

## Stability

Unlike extruded panels, EPS is very stable in high temperatures; it does not warp and would not cause problems which often happen with other boards.

#### Dimensions (L X B X T)

600 x 125 x 100 - 1 mm

600 x 100 x 1-100 mm

400 x 125 x 1 – 100 mm

400 x 100 x 1 – 100 mm

250 x 125 x 1 – 100 mm

230 x 100 x 1 – 100 mm

300 x 100 x 1 - 60 mm

200 x 100 x 1 - 50 mm









|                                          | STANDARD GRADE                                                                                                                                                                                  |               |                                               | LD                          | SD            | HD              | EHD             | UHD               | SHD              | XD        |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------|-----------------------------|---------------|-----------------|-----------------|-------------------|------------------|-----------|
| GENERAL PROPERTIES OF THERMAL INSULATION |                                                                                                                                                                                                 | Method        | Unit                                          | Type as per ASTM C 578 - 09 |               |                 |                 |                   |                  |           |
|                                          |                                                                                                                                                                                                 | of Test       | Measurements                                  | Type XI                     | Type I        | Type VIII       | Type II         | Type IX           | Type XIV         | Туре Х    |
|                                          | • THERMAL RESISTANCE (R-VALUE) - Is The resistance to heat transfer through a material by conduction. It can be calculated by dividing the material thickness "d" by its thermal conductivity   |               |                                               |                             |               |                 |                 |                   |                  |           |
|                                          | R-value, Thermal Resistance of 1.00-in.(25.4-mm) thickness.<br>Mean Temperature: 75 $\pm$ 2°F (24 $\pm$ 1°C)                                                                                    | C 518         | *F-ft²-h/Btu                                  | >3.1                        | >3.6          | >3.8            | >4.0            | >4.2              | >4.2             | >4.3      |
| ILES                                     |                                                                                                                                                                                                 |               | (K.m²)/W                                      | >0.55                       | >0 .63        | >0. 67          | >0.70           | >0.74             | >0.74            | >0.76     |
| PROPERTILES                              | R-value, Thermal Resistance of 1.00-in.[25.4-mm] thickness. Mean Temperature: 95 $\pm$ 2°F (35 $\pm$ 2°C)                                                                                       |               | (K.m²)/W                                      | >0 . 53                     | >0.61         | >0.64           | >0. 67          | >0.71             | >0.71            | >0.73     |
| THERMAL                                  | • THERMAL CONDUCTIVITY (k value) - is the rate of heat flo                                                                                                                                      | w through one | Square meter area of a1i<br>difference betwee |                             |               | dicular directi | ion to the mate | erial surface. ir | nduced by 1*K to | emperatur |
| F                                        | k - value. Thermal conductivity.                                                                                                                                                                |               | Blu∙in/h.ft² ºF                               | <0.320                      | <0.279        | <0.263          | <0.252          | <0.238            | <0.238           | <0.23     |
|                                          | MeanTemperature: 75 ± 2°F (24 ± 1°C)                                                                                                                                                            | C 518         | W/(m.K)                                       | <0.0462                     | <0.0403       | <0.0379         | <0.0363         | <0.0343           | <0.0343          | <0.033    |
|                                          | k - value. Thermal conductivity.<br>MeanTemperature: 95 ± 2°F (35 ± 2°C)                                                                                                                        |               | W/(m.K)                                       | <0.0482                     | <0. 0419      | <0.0394         | <0.0377         | <0.0356           | <0.0356          | <0.03     |
| ES                                       | FLEXURAL STRENGTH- Is its ability to endure a specific pressure Without cracking or breaking and to recover the original dimensions and size after removal of compressive load.                 |               |                                               |                             |               |                 |                 |                   |                  |           |
| OPERT                                    | Flexural Strength                                                                                                                                                                               | 0.007         | psi                                           | _>10                        | >25           | >30             | >35             | >50               | >60              | >75       |
| ICAL PR                                  |                                                                                                                                                                                                 | C 203         | (kPa)                                         | >7 0                        | >173          | >208            | >240            | >345              | >414             | >517      |
| MECHANICAL PROPERTIES                    | - COMPRESSIVE STRENGTH - the strength of that lhe rigid Insulation exhibits when exposed to a certain stress.                                                                                   |               |                                               |                             |               |                 |                 |                   |                  |           |
| Σ                                        | Compressive resistance at yield or 10% deformation. whichever occurs first (with skin Intact)  D1621                                                                                            | D1621         | psi                                           | ~ >5                        | ~ >10         | ~ >13           | · >15           | / >5              | · >40            | >60       |
|                                          |                                                                                                                                                                                                 | DIOLI         | (kPa)                                         | >35                         | >69           | >90             | >104            | >173              | >276             | >414      |
| RTIES                                    | OXYGEN INDEX* - for measuring the minimum concentration of oxygen, expressed as percent volume, that will just support flamming combustion in a flowing mixturem of oxygen and nitrogen.        |               |                                               |                             |               |                 |                 |                   |                  |           |
| PROPE                                    | Oxygen Index                                                                                                                                                                                    | D2863         | volume(%)                                     |                             |               |                 | >24             |                   |                  |           |
| RESISTANCE PROPERTIES                    | • FLAME SPREAD INDEX* - a number or classification indication of oxygen, expressed as percent volume, that just support flamming combustion in a flowing mixture of oxygen and nitrogen.        |               |                                               |                             |               |                 |                 |                   |                  |           |
| TIRE RE                                  | Flame Spread up to 6.00-in thickness                                                                                                                                                            | E84           | Rating                                        |                             |               |                 | <75             |                   |                  |           |
|                                          | • SMOKE DEVELOPED INDEX* - a number or classification indicating a comparative measure derived from smoke obscuration data collected during the test for surface buricharacteristics.           |               |                                               |                             |               |                 |                 |                   |                  |           |
|                                          | Smoke Development up to 6.00-in thickness                                                                                                                                                       | E84           | Rating                                        |                             |               |                 | < 450           |                   |                  |           |
|                                          | DIMENSIONAL STABILITY - the insulation ability to maintain its shape and original dimensions, after applying it for a long time, due to the effects of aging, heat and humidity the insulation. |               |                                               |                             |               |                 |                 |                   |                  |           |
| RTIES                                    | Dimensional Stability (change in dimensions)                                                                                                                                                    | D 2126        | %                                             |                             |               |                 | <2.0            |                   |                  |           |
| PROPE                                    | ·WATER vapor PERMEANCE - measures the amount of moisture that diffuses through the insulation due to the difference in vapor pressure between its two sur                                       |               |                                               |                             |               |                 |                 |                   |                  | surfaces  |
| PHYSICAL                                 | Water vapor Permeance of 1.00-in. [25.4-mm] thickness E 96                                                                                                                                      | EUE           | perm                                          | <5.0                        | <5.0          | <3.5            | <3.5            | <2.5              | <2.5             | <2.5      |
| F                                        |                                                                                                                                                                                                 | E 90          | (ng/Pa.s.m²)                                  | <287                        | <287          | <201            | <201            | <143              | <143             | <143      |
|                                          | · WATER ABSORPTION - is expressed by th                                                                                                                                                         | e percentage  | of water (by volume or                        | weight) that                | the insulatio | n can absorb    | when it is co   | mpletely flood    | led in water.    |           |
|                                          | Water Absorption by Total immersion                                                                                                                                                             | C 272         | volume (%)                                    | <4.0                        | <4.0          | <3.0            | <3.0            | <2.0              | <2.0             | <2.0      |
|                                          |                                                                                                                                                                                                 | • DENSIT      | Y - is the weight divid                       | ed by the vo                | lume of mat   | erial.          |                 |                   |                  |           |
|                                          | Minimum Density D 162                                                                                                                                                                           | D 1622        | lb/ft³                                        | 0.7                         | 0.9           | 1.15            | 1.35            | 1.8               | 2.4              | 2.85      |
|                                          |                                                                                                                                                                                                 | ם וטבב        | (kg/m <sup>3)</sup>                           | 12                          | 15            | 18              | 22              | 29                | 28               | 46        |



